A Survey of Schema Matching Research using Database Schemas and Instances
نویسندگان
چکیده
Schema matching is considered as one of the essential phases of data integration in database systems. The main aim of the schema matching process is to identify the correlation between schema which helps later in the data integration process. The main issue concern of schema matching is how to support the merging decision by providing the correspondence between attributes through syntactic and semantic heterogeneous in data sources. There have been a lot of attempts in the literature toward utilizing database instances to detect the correspondence between attributes during schema matching process. Many approaches based on instances have been proposed aiming at improving the accuracy of the matching process. This paper set out a classification of schema matching research in database system exploiting database schema and instances. We survey and analyze the schema matching techniques applied in the literature by highlighting the strengths and the weaknesses of each technique. A deliberate discussion has been reported highlights on challenges and the current research trends of schema matching in database. We conclude this paper with some future work directions that help researchers to explore and investigate current issues and challenges related to schema matching in contemporary
منابع مشابه
An Improved Semantic Schema Matching Approach
Schema matching is a critical step in many applications, such as data warehouse loading, Online Analytical Process (OLAP), Data mining, semantic web [2] and schema integration. This task is defined for finding the semantic correspondences between elements of two schemas. Recently, schema matching has found considerable interest in both research and practice. In this paper, we present a new impr...
متن کاملDatabase Schema Matching Using Machine Learning with Feature Selection
Schema matching, the problem of finding mappings between the attributes of two semantically related database schemas, is an important aspect of many database applications such as schema integration, data warehousing, and electronic commerce. Unfortunately, schema matching remains largely a manual, labor-intensive process. Furthermore, the effort required is typically linear in the number of sch...
متن کاملPrivacy-Preserving Schema Matching Using Mutual Information
The problem of schema or ontology matching is to define mappings among schema or ontology elements. Such mappings are typically defined between two schemas or two ontologies at a time. Ideally, using the defined mappings, one would be able to issue a single query that will be rewritten automatically to all the databases, instead of manually writing a query to each database. In a centrally media...
متن کاملSchema Matching Using Machine Learningwith
Schema matching, the problem of nding mappings between the attributes of two semantically related database schemas, is an important aspect of many database applications such as schema integration, data warehousing, and electronic commerce. Unfortunately, schema matching remains largely a manual, labor-intensive process. Furthermore, the eeort required is typically linear in the number of schema...
متن کاملA User-Guided Approach for Large-Scale Multi-schema Integration
Schema matching plays an important role in various fields of enterprise system modeling and integration, such as in databases, business intelligence, knowledge management, interoperability, and others. The matching problem relates to finding the semantic correspondences between two or more schemas. The focus of the most of the research done in schema and ontology matching is pairwise matching, ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2017